Institution of MECHANICAL ENGINEERS

ATO: Integral to achieve a truly interoperable system

09 May 2019

George Clark Director of Engineering, Transport for London. President, IRSE

Overview

- History of ATO, from beginnings in Mass Transit world
- The need to collaborate between the train and the signal
- Challenges that face railways implementing ATO
- What ATO can unlock for a better future

ATO: INTEGRATION TO ACHIEVE A TRULY INTEROPERABLE SYSTEM

Images and video | Document library | News | Industry | Jobs | Interactive map 📀

Sydney Metro Projects and progress Construction: stations and sites Sustainability Education Get In touch Q

As demand rises, we will grow with London

Home > Sydney Metro > About Sydney Metro

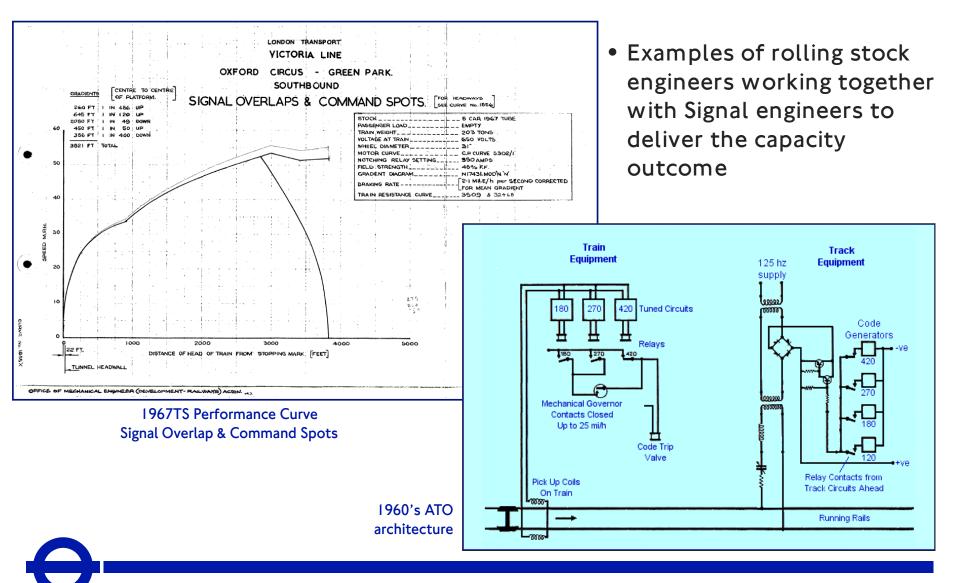
SHARE << | PRINT

About Sydney Metro

The beginnings of ATO

London Underground Victoria Line

- The first automatic railway in the world opened 1968-1971
- ATO was a showcase of technical research & innovation but the need was primarily driven by capacity demand (alleviate pressures on the Northern and Piccadilly Lines)



Provided the Opportunity for a whole system approach to the railway design

- Social benefits of railways were first introduced
- Every station inter-connect with another line or national rail (except Pimlico)
- Humped station platform design to improve acceleration and braking
- Cross-platform changes, e.g. at Euston with the Northern Line, at Finsbury Park with the Piccadilly Line

Stimulated the collaboration between different engineering disciplines

The beginnings of collaboration

Essential for ATO: systems integration

 Increasing system complexity means more parts have to work together to delivery the outcome

Electro/ pneumatic / mechanical/ relays Basic Automatic Train Protection

Electro mechanical / Relays / simple discreet component electronics

Automatic Train Operation

Train Management Systems for asset management & comms link to control room. Enhanced electronics & SCADA

Enhanced signalling functionality based on solid state technology

DC Cam-shaft controllers Integrated ticketing & motors replaced by AC: and payment systems drives

Capacity enhancements through software ATO \ ATR

Integrated Train Identification and Comms Systems

Enhanced Service Control

Partial Automatic Train Regulation

Air Conditioned Train Cars

Auto turnaround

Tunnel Cooling

Mobile Phone and TV services above and below ground

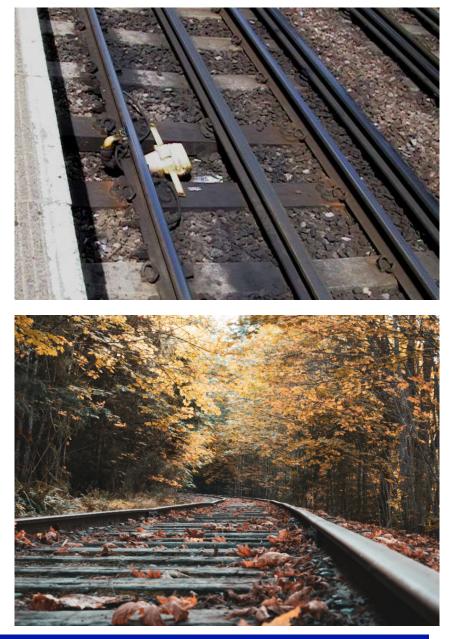
Full Automation. Demand based service management

Auto Dwell Management. ull Automatic Train Regulation

Decision Support

Integrated Signals and Comm Systems

Integrated Real Time Information

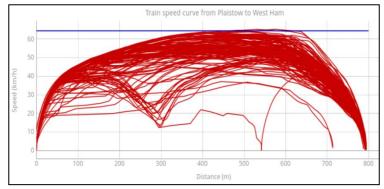

Mobile Phone and TV services below ground

Environmental Factors

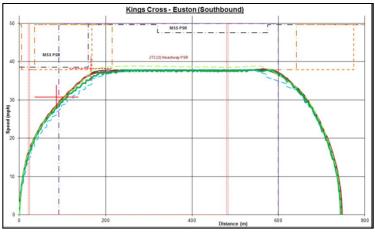
- Need for Train location
- Need to lubricate
- Vegetation control

Automatic Train Operation

Need for EnhancedAdhesion Management


The benefits of ATO

- Delivers a step-change to capacity and safety
- Improves runtime variability
 - taking out the slack and delivers faster journey times
- Maximise acceleration and braking profiles
 - improving headway and minimises recovery margins to deliver a higher frequency service
- Improves timetable adherence
 - minimising excess journey times and increase schedule confidence


• Opens up the opportunities for wider systems integration, e.g. ATR, TMS

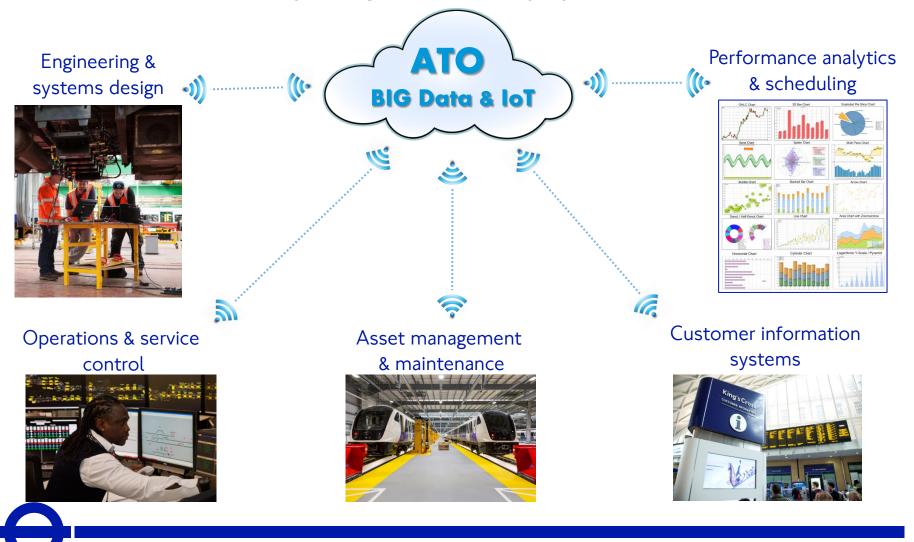
• improving journey time reliability and implementing energy efficiency strategies

Manual driving profiles

ATO driving profiles

The challenges with ATO

- Acceptance of change
 - How does the driver know the system is functioning correctly? How do you manage driver under-loading and maintain awareness & concentration?
 - Training and up-skilling is needed to adapt to the technology and ways of working
- Designing to the margin
 - Minimising safety margins to realise the full capability of the train and infrastructure; otherwise, performance, specifically, at junctions and schedule termini may be worse than manual driving


• Sweating the assets

- The ability to work the assets harder and at high frequencies creates a new generation of wear and tear, meaning an increased focus on system reliability and maintenance is needed
- Climate change
- System upgrade and migration
 - Ensuring the railway continues to operate seamlessly during the period of change is like running a marathon whilst undertaking open-heart surgery

The ATO future

• At the heart of a fully integrated railway system

i am aware the performance of passenger door Z80 has been sub-optimal ... initiating diagnosis and filing maintenance report

i am experiencing adhesion problems optimising traction at 85% and updating scheduling system

i am aware the approach platform is at crowded at 95% ... adjusting dwell time and uploading forecast to customer system

Thank You !

i am aware...